Home
My
$18,000 Timeshare Story
Objectives
The
Power Of Two
Other
People's Stories
Important
Links
Timeshare
Articles
RHC
Destination Reviews
Who
Is Harpy?
Write
To Harpy
Throw
Harpy A Fish!
The
Timeshare Club
Bookmark
this site
Need
More Information?
|
きっと望んでいるでしょう。では、常に自分自身をアップグレードする必要があります。IT業種で仕事しているあなたは、夢を達成するためにどんな方法を利用するつもりですか。 Microsoft DP-100J資格勉強試験問題集を購買してから、一年間の無料更新を楽しみにしています。あなたにMicrosoft DP-100J資格勉強試験に関する最新かつ最完備の資料を勉強させ、試験に合格させることだと信じます。 あなたは試験の最新バージョンを提供することを要求することもできます。
Microsoft Azure DP-100J 試験に失敗したら、全額で返金する承諾があります。もしかすると君はほかのサイトもMicrosoftのDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)資格勉強認証試験に関する資料があるのを見つけた、比較したらRoyalholidayclubbedが提供したのがいちばん全面的で品質が最高なことがわかりました。 あなたは各バーションのMicrosoftのDP-100J 問題サンプル試験の資料をダウンロードしてみることができ、あなたに一番ふさわしいバーションを見つけることができます。暇な時間だけでMicrosoftのDP-100J 問題サンプル試験に合格したいのですか。
従来の試験によってRoyalholidayclubbed が今年のMicrosoftのDP-100J資格勉強認定試験を予測してもっとも真実に近い問題集を研究し続けます。Royalholidayclubbedは100%でMicrosoftのDP-100J資格勉強「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」認定試験に合格するのを保証いたします。
Microsoft DP-100J資格勉強 - まだなにを待っていますか。DP-100J資格勉強認定試験に合格することは難しいようですね。試験を申し込みたいあなたは、いまどうやって試験に準備すべきなのかで悩んでいますか。そうだったら、下記のものを読んでください。いまDP-100J資格勉強試験に合格するショートカットを教えてあげますから。あなたを試験に一発合格させる素晴らしいDP-100J資格勉強試験に関連する参考書が登場しますよ。それはRoyalholidayclubbedのDP-100J資格勉強問題集です。気楽に試験に合格したければ、はやく試しに来てください。
あなたはRoyalholidayclubbedの学習教材を購入した後、私たちは一年間で無料更新サービスを提供することができます。IT業種が新しい業種で、経済発展を促進するチェーンですから、極めて重要な存在だということを良く知っています。
DP-100J PDF DEMO:QUESTION NO: 1 注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、 記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質 問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります 。 このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら の質問はレビュー画面に表示されません。 複数の列に欠損値を含む数値データセットを分析しています。 機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が あります。 すべての値を含めるには、完全なデータセットを分析する必要があります。 解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま す。 ソリューションは目標を達成していますか? A. はい B. いいえ Answer: A Explanation Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or "Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values. Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns. References: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/ https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
QUESTION NO: 2 Azure Machine Learning Studioを使用してデータセットを分析しています。 各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。 ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し ます。 注:それぞれの正しい選択には1ポイントの価値があります。 A. インジケーター値に変換 B. カウントテーブルのエクスポート C. 線形相関の計算 D. データの要約 E. Pythonスクリプトの実行 Answer: B,C Explanation The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules. E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know: How many missing values are there in each column? How many unique values are there in a feature column? What is the mean and standard deviation for each column? The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input. References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/summarize-data
QUESTION NO: 3 Azure Machine Learning Studioで新しい実験を作成します。多くの列に欠損値がある小さなデータセットがあります 。データでは、各列に予測変数を適用する必要はありません。欠落データの処理モジュール を使用して、欠落データを処理する予定です。 データクリーニング方法を選択する必要があります。 どの方法を使用する必要がありますか? A. 確率的PACを使用して置換 B. 正規化 C. MICEを使用して交換 D. 合成マイノリティ Answer: A
QUESTION NO: 4 モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま す。 あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ ンを選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: 500 For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock. A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment. Here we must replicate the findings. Box 2: Mean Absolute Error Scenario: Given a trained model and a test dataset, you must compute the Permutation Feature Importance scores of feature variables. You need to set up the Permutation Feature Importance module to select the correct metric to investigate the model's accuracy and replicate the findings. Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of Determination References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/permutation-feature-importan
QUESTION NO: 5 x.1、x2、およびx3の機能に対してscikit-learn Pythonライブラリを使用して、機能のスケーリングを実行しています。 元のデータとスケーリングされたデータを次の図に示します。 ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回 答する回答選択肢を選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: StandardScaler The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1. Example: All features are now on the same scale relative to one another. Box 2: Min Max Scaler Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap. Box 3: Normalizer References: http://benalexkeen.com/feature-scaling-with-scikit-learn/
Huawei H20-713_V1.0 - ここには、私たちは君の需要に応じます。 あなたは弊社を選ぶとき、MicrosoftのMicrosoft PL-900J試験に合格する最高の方法を選びます。 うちのMicrosoftのAmazon AIF-C01試験トレーニング資料を購入する前に、Royalholidayclubbedのサイトで、一部分のフリーな試験問題と解答をダンロードでき、試用してみます。 Huawei H20-712_V1.0 - もっと多くの認可と就職機会を貰いたいのですか。 我々の目的はあなたにMicrosoftのCWNP CWDP-305試験に合格することだけです。
Updated: May 28, 2022
|
|