Home
My
$18,000 Timeshare Story
Objectives
The
Power Of Two
Other
People's Stories
Important
Links
Timeshare
Articles
RHC
Destination Reviews
Who
Is Harpy?
Write
To Harpy
Throw
Harpy A Fish!
The
Timeshare Club
Bookmark
this site
Need
More Information?
|
Royalholidayclubbed のMicrosoftのDP-100Jソフトウエア問題集はシラバスに従って、それにDP-100Jソフトウエア認定試験の実際に従って、あなたがもっとも短い時間で最高かつ最新の情報をもらえるように、弊社はトレーニング資料を常にアップグレードしています。弊社のDP-100Jソフトウエアのトレーニング資料を買ったら、一年間の無料更新サービスを差し上げます。もっと長い時間をもらって試験を準備したいのなら、あなたがいつでもサブスクリプションの期間を伸びることができます。 それはあなたを試験に準備するときにより多くの時間を節約させます。しかも、RoyalholidayclubbedのDP-100Jソフトウエア問題集はあなたが一回で試験に合格することを保証します。 Royalholidayclubbedには専門的なエリート団体があります。
DP-100Jソフトウエア認定試験の準備を完了したのですか。RoyalholidayclubbedのMicrosoftのDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)ソフトウエア試験トレーニング資料は最高のトレーニング資料です。 受験生が最も早い時間で、一回だけでMicrosoftのDP-100J 技術内容認定試験に合格できるために、Royalholidayclubbedはずっとがんばります。RoyalholidayclubbedのMicrosoftのDP-100J 技術内容試験トレーニング資料は高度に認証されたIT領域の専門家の経験と創造を含めているものです。
問題が更新される限り、Royalholidayclubbedは直ちに最新版のDP-100Jソフトウエア資料を送ってあげます。そうすると、あなたがいつでも最新バージョンの資料を持っていることが保証されます。Royalholidayclubbedはあなたが試験に合格するのを助けることができるだけでなく、あなたは最新の知識を学ぶのを助けることもできます。
Microsoft DP-100Jソフトウエア - あなたは体験してから安心で購入できます。常々、時間とお金ばかり効果がないです。正しい方法は大切です。我々Royalholidayclubbedは一番効果的な方法を探してあなたにMicrosoftのDP-100Jソフトウエア試験に合格させます。弊社のMicrosoftのDP-100Jソフトウエアソフトを購入するのを決めるとき、我々は各方面であなたに保障を提供します。購入した前の無料の試み、購入するときのお支払いへの保障、購入した一年間の無料更新MicrosoftのDP-100Jソフトウエア試験に失敗した全額での返金…これらは我々のお客様への承諾です。
IT業界で発展したいなら、MicrosoftのDP-100Jソフトウエア試験のような国際的な試験に合格するのは重要です。我々RoyalholidayclubbedはITエリートの皆さんの努力であなたにMicrosoftのDP-100Jソフトウエア試験に速く合格する方法を提供します。
DP-100J PDF DEMO:QUESTION NO: 1 モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま す。 あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ ンを選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: 500 For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock. A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment. Here we must replicate the findings. Box 2: Mean Absolute Error Scenario: Given a trained model and a test dataset, you must compute the Permutation Feature Importance scores of feature variables. You need to set up the Permutation Feature Importance module to select the correct metric to investigate the model's accuracy and replicate the findings. Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of Determination References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/permutation-feature-importan
QUESTION NO: 2 Azure Machine Learning Studioを使用してデータセットを分析しています。 各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。 ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し ます。 注:それぞれの正しい選択には1ポイントの価値があります。 A. インジケーター値に変換 B. カウントテーブルのエクスポート C. 線形相関の計算 D. データの要約 E. Pythonスクリプトの実行 Answer: B,C Explanation The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules. E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know: How many missing values are there in each column? How many unique values are there in a feature column? What is the mean and standard deviation for each column? The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input. References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/summarize-data
QUESTION NO: 3 x.1、x2、およびx3の機能に対してscikit-learn Pythonライブラリを使用して、機能のスケーリングを実行しています。 元のデータとスケーリングされたデータを次の図に示します。 ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回 答する回答選択肢を選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: StandardScaler The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1. Example: All features are now on the same scale relative to one another. Box 2: Min Max Scaler Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap. Box 3: Normalizer References: http://benalexkeen.com/feature-scaling-with-scikit-learn/
QUESTION NO: 4 注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、 記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質 問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります 。 このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら の質問はレビュー画面に表示されません。 複数の列に欠損値を含む数値データセットを分析しています。 機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が あります。 すべての値を含めるには、完全なデータセットを分析する必要があります。 解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま す。 ソリューションは目標を達成していますか? A. はい B. いいえ Answer: A Explanation Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or "Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values. Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns. References: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/ https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
QUESTION NO: 5 分類タスクを解決しています。 データセットが不均衡です。 あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必 要があります。 あなたはどちらのモジュールを使用する必要がありますか? A. フィルタに基づく機能の選択 B. 順列機能の重要性 C. フィッシャー線形判別分析。 D. の合成少数オーバーサンプリング技術(撃ち) Answer: D Explanation Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases. You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented. Reference: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
Workday Workday-Prism-Analytics - できるだけ100%の通過率を保証使用にしています。 EMC D-FEN-F-00 - それで、「就職難」の場合には、他の人々と比べて、あなたはずっと優位に立つことができます。 ただ、社会に入るIT卒業生たちは自分能力の不足で、ACAMS CAMS試験向けの仕事を探すのを悩んでいますか?それでは、弊社のMicrosoftのACAMS CAMS練習問題を選んで実用能力を速く高め、自分を充実させます。 Amazon AIF-C01-JPN - なぜと言うのは、我々社の専門家は改革に応じて問題の更新と改善を続けていくのは出発点から勝つからです。 RoyalholidayclubbedのMicrosoft Microsoft MS-102-KR問題集は専門家たちが数年間で過去のデータから分析して作成されて、試験にカバーする範囲は広くて、受験生の皆様のお金と時間を節約します。
Updated: May 28, 2022
|
|