Home
My
$18,000 Timeshare Story
Objectives
The
Power Of Two
Other
People's Stories
Important
Links
Timeshare
Articles
RHC
Destination Reviews
Who
Is Harpy?
Write
To Harpy
Throw
Harpy A Fish!
The
Timeshare Club
Bookmark
this site
Need
More Information?
|
人によって目標が違いますが、あなたにMicrosoft DP-100J受験トレーリング試験に順調に合格できるのは我々の共同の目標です。この目標の達成はあなたがIT技術領域へ行く更なる発展の一歩ですけど、我々社Royalholidayclubbed存在するこそすべての意義です。だから、我々社は力の限りで弊社のMicrosoft DP-100J受験トレーリング試験資料を改善し、改革の変更に応じて更新します。 RoyalholidayclubbedはMicrosoftのDP-100J受験トレーリング「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」試験に向けて問題集を提供する専門できなサイトで、君の専門知識を向上させるだけでなく、一回に試験に合格するのを目標にして、君がいい仕事がさがせるのを一生懸命頑張ったウェブサイトでございます。 あなたに高品質で、全面的なDP-100J受験トレーリング参考資料を提供することは私たちの責任です。
Microsoft Azure DP-100J 弊社の商品が好きなのは弊社のたのしいです。Microsoft Azure DP-100J受験トレーリング - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版) あなたは弊社の商品を買ったら一年間に無料でアップサービスが提供された認定試験に合格するまで利用しても喜んでいます。 Royalholidayclubbed を選択して100%の合格率を確保することができて、もし試験に失敗したら、Royalholidayclubbedが全額で返金いたします。
Royalholidayclubbedが提供した資料は最も全面的で、しかも更新の最も速いです。Royalholidayclubbedはその近道を提供し、君の多くの時間と労力も節約します。RoyalholidayclubbedはMicrosoftのDP-100J受験トレーリング認定試験「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」に向けてもっともよい問題集を研究しています。
Microsoft DP-100J受験トレーリング - Royalholidayclubbedを選んだら、成功への扉を開きます。生活で他の人が何かやったくれることをいつも要求しないで、私が他の人に何かやってあげられることをよく考えるべきです。職場でも同じです。ボスに偉大な価値を創造してあげたら、ボスは無論あなたをヘアします。これに反して、あなたがずっと普通な職員だったら、遅かれ早かれ解雇されます。ですから、IT認定試験に受かって、自分の能力を高めるべきです。 RoyalholidayclubbedのMicrosoftのDP-100J受験トレーリング「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」試験問題集はあなたが成功へのショートカットを与えます。IT 職員はほとんど行動しましたから、あなたはまだ何を待っているのですか。ためらわずにRoyalholidayclubbedのMicrosoftのDP-100J受験トレーリング試験トレーニング資料を購入しましょう。
Royalholidayclubbedはあなたが試験に合格するのを助けることができるだけでなく、あなたは最新の知識を学ぶのを助けることもできます。このような素晴らしい資料をぜひ見逃さないでください。
DP-100J PDF DEMO:QUESTION NO: 1 モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま す。 あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ ンを選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: 500 For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock. A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment. Here we must replicate the findings. Box 2: Mean Absolute Error Scenario: Given a trained model and a test dataset, you must compute the Permutation Feature Importance scores of feature variables. You need to set up the Permutation Feature Importance module to select the correct metric to investigate the model's accuracy and replicate the findings. Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of Determination References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/permutation-feature-importan
QUESTION NO: 2 Azure Machine Learning Studioを使用してデータセットを分析しています。 各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。 ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し ます。 注:それぞれの正しい選択には1ポイントの価値があります。 A. インジケーター値に変換 B. カウントテーブルのエクスポート C. 線形相関の計算 D. データの要約 E. Pythonスクリプトの実行 Answer: B,C Explanation The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules. E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know: How many missing values are there in each column? How many unique values are there in a feature column? What is the mean and standard deviation for each column? The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input. References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/summarize-data
QUESTION NO: 3 x.1、x2、およびx3の機能に対してscikit-learn Pythonライブラリを使用して、機能のスケーリングを実行しています。 元のデータとスケーリングされたデータを次の図に示します。 ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回 答する回答選択肢を選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: StandardScaler The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1. Example: All features are now on the same scale relative to one another. Box 2: Min Max Scaler Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap. Box 3: Normalizer References: http://benalexkeen.com/feature-scaling-with-scikit-learn/
QUESTION NO: 4 注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、 記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質 問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります 。 このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら の質問はレビュー画面に表示されません。 複数の列に欠損値を含む数値データセットを分析しています。 機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が あります。 すべての値を含めるには、完全なデータセットを分析する必要があります。 解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま す。 ソリューションは目標を達成していますか? A. はい B. いいえ Answer: A Explanation Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or "Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values. Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns. References: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/ https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
QUESTION NO: 5 分類タスクを解決しています。 データセットが不均衡です。 あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必 要があります。 あなたはどちらのモジュールを使用する必要がありますか? A. フィルタに基づく機能の選択 B. 順列機能の重要性 C. フィッシャー線形判別分析。 D. の合成少数オーバーサンプリング技術(撃ち) Answer: D Explanation Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases. You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented. Reference: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
IFSE Institute LLQP - このサイトはIT認定試験を受けた受験生から広く好評されました。 あるいは、無料で試験GAQM CASPO-001問題集を更新してあげるのを選択することもできます。 UiPath UiPath-TAEPv1 - Royalholidayclubbedの試験参考書を利用することを通して自分の目標を達成することができますから。 Huawei H19-301_V4.0 - なぜ受験生のほとんどはRoyalholidayclubbedを選んだのですか。 Fortinet FCP_ZCS-AD-7.4 - もしこの問題集を利用してからやはり試験に不合格になってしまえば、Royalholidayclubbedは全額で返金することができます。
Updated: May 28, 2022
|
|