Home
My
$18,000 Timeshare Story
Objectives
The
Power Of Two
Other
People's Stories
Important
Links
Timeshare
Articles
RHC
Destination Reviews
Who
Is Harpy?
Write
To Harpy
Throw
Harpy A Fish!
The
Timeshare Club
Bookmark
this site
Need
More Information?
|
きみはMicrosoftのDP-100J資格勉強認定テストに合格するためにたくさんのルートを選択肢があります。Royalholidayclubbedは君のために良い訓練ツールを提供し、君のMicrosoft認証試に高品質の参考資料を提供しいたします。あなたの全部な需要を満たすためにいつも頑張ります。 私たちのDP-100J資格勉強試験参考書を利用し、DP-100J資格勉強試験に合格できます。おそらくあなたは私たちのDP-100J資格勉強試験参考書を信じられないでしょう。 Royalholidayclubbedの専門家チームがMicrosoftのDP-100J資格勉強認証試験に対して最新の短期有効なトレーニングプログラムを研究しました。
Microsoft Azure DP-100J 君の明るい将来を祈っています。RoyalholidayclubbedのMicrosoftのDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)資格勉強認証試験について最新な研究を完成いたしました。 しかし必ずしも大量の時間とエネルギーで復習しなくて、弊社が丹精にできあがった問題集を使って、試験なんて問題ではありません。多くの人々は高い難度のIT認証試験に合格するのは専門の知識が必要だと思います。
インターネットで時勢に遅れないDP-100J資格勉強勉強資料を提供するというサイトがあるかもしれませんが、Royalholidayclubbedはあなたに高品質かつ最新のMicrosoftのDP-100J資格勉強トレーニング資料を提供するユニークなサイトです。Royalholidayclubbedの勉強資料とMicrosoftのDP-100J資格勉強に関する指導を従えば、初めてMicrosoftのDP-100J資格勉強認定試験を受けるあなたでも一回で試験に合格することができます。我々は受験生の皆様により高いスピードを持っているかつ効率的なサービスを提供することにずっと力を尽くしていますから、あなたが貴重な時間を節約することに助けを差し上げます。
Microsoft DP-100J資格勉強 - 試験に良いの準備と自信がとても必要だと思います。RoyalholidayclubbedのMicrosoftのDP-100J資格勉強試験トレーニング資料はインターネットでの全てのトレーニング資料のリーダーです。Royalholidayclubbedはあなたが首尾よく試験に合格することを助けるだけでなく、あなたの知識と技能を向上させることもできます。あなたが自分のキャリアでの異なる条件で自身の利点を発揮することを助けられます。
Royalholidayclubbedの商品は100%の合格率を保証いたします。RoyalholidayclubbedはITに対応性研究続けて、高品質で低価格な問題集が開発いたしました。
DP-100J PDF DEMO:QUESTION NO: 1 機械学習モデルを使用してインテリジェントなソリューションを構築しています。 環境は次の要件をサポートする必要があります。 *データサイエンティストはクラウド環境でノートブックを構築する必要がある *データサイエンティストは、機械学習パイプラインで自動フィーチャエンジニアリングと モデル構築を使用する必要があります。 *動的なワーカー割り当てでSparkインスタンスを使用して再トレーニングするには、ノート ブックを展開する必要があります。 *ノートブックは、ローカルでバージョン管理するためにエクスポート可能である必要があ ります。 環境を作成する必要があります。 どの4つのアクションを順番に実行する必要がありますか?回答するには、適切なアクショ ンをアクションのリストから回答エリアに移動し、正しい順序に並べます。 Answer: Explanation Step 1: Create an Azure HDInsight cluster to include the Apache Spark Mlib library Step 2: Install Microsot Machine Learning for Apache Spark You install AzureML on your Azure HDInsight cluster. Microsoft Machine Learning for Apache Spark (MMLSpark) provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets. Step 3: Create and execute the Zeppelin notebooks on the cluster Step 4: When the cluster is ready, export Zeppelin notebooks to a local environment. Notebooks must be exportable to be version controlled locally. References: https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-zeppelin-notebook https://azuremlbuild.blob.core.windows.net/pysparkapi/intro.html
QUESTION NO: 2 Azure Machine Learning Studioで新しい実験を作成します。多くの列に欠損値がある小さなデータセットがあります 。データでは、各列に予測変数を適用する必要はありません。欠落データの処理モジュール を使用して、欠落データを処理する予定です。 データクリーニング方法を選択する必要があります。 どの方法を使用する必要がありますか? A. 確率的PACを使用して置換 B. 正規化 C. MICEを使用して交換 D. 合成マイノリティ Answer: A
QUESTION NO: 3 注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、 記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質 問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります 。 このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら の質問はレビュー画面に表示されません。 複数の列に欠損値を含む数値データセットを分析しています。 機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が あります。 すべての値を含めるには、完全なデータセットを分析する必要があります。 解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま す。 ソリューションは目標を達成していますか? A. はい B. いいえ Answer: A Explanation Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or "Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values. Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns. References: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/ https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
QUESTION NO: 4 Azure Machine Learning Studioを使用してデータセットを分析しています。 各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。 ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し ます。 注:それぞれの正しい選択には1ポイントの価値があります。 A. インジケーター値に変換 B. カウントテーブルのエクスポート C. 線形相関の計算 D. データの要約 E. Pythonスクリプトの実行 Answer: B,C Explanation The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules. E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know: How many missing values are there in each column? How many unique values are there in a feature column? What is the mean and standard deviation for each column? The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input. References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/summarize-data
QUESTION NO: 5 モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま す。 あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ ンを選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: 500 For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock. A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment. Here we must replicate the findings. Box 2: Mean Absolute Error Scenario: Given a trained model and a test dataset, you must compute the Permutation Feature Importance scores of feature variables. You need to set up the Permutation Feature Importance module to select the correct metric to investigate the model's accuracy and replicate the findings. Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of Determination References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/permutation-feature-importan
試験の準備をするためにRoyalholidayclubbedのMicrosoftのMicrosoft SC-400J試験トレーニング資料を買うのは冒険的行為と思ったとしたら、あなたの人生の全てが冒険なことになります。 Amazon CLF-C02 - そうしたら半分の労力で二倍の効果を得ることができますから。 IT認定試験の中でどんな試験を受けても、RoyalholidayclubbedのMicrosoft MS-102試験参考資料はあなたに大きなヘルプを与えることができます。 あなたに便利なオンラインサービスを提供して、Microsoft Amazon MLS-C01-JPN試験問題についての全ての質問を解決して差し上げます。 その中で、VMware 250-608認定試験は最も重要な一つです。
Updated: May 28, 2022
|
|