Home
My
$18,000 Timeshare Story
Objectives
The
Power Of Two
Other
People's Stories
Important
Links
Timeshare
Articles
RHC
Destination Reviews
Who
Is Harpy?
Write
To Harpy
Throw
Harpy A Fish!
The
Timeshare Club
Bookmark
this site
Need
More Information?
|
これも弊社が自信的にあなたに商品を薦める原因です。もし弊社のソフトを使ってあなたは残念で試験に失敗したら、弊社は全額で返金することを保証いたします。すべてのことの目的はあなたに安心に試験に準備さされるということです。 認証専門家や技術者及び全面的な言語天才がずっと最新のMicrosoftのDP-100J日本語版トレーリング試験を研究していて、最新のMicrosoftのDP-100J日本語版トレーリング問題集を提供します。ですから、君はうちの学習教材を安心で使って、きみの認定試験に合格することを保証します。 試験に失敗したら、全額で返金する承諾があります。
Microsoft Azure DP-100J あなたの気に入る版を選ぶことができます。たとえば、ベストセラーのMicrosoft DP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)日本語版トレーリング問題集は過去のデータを分析して作成ます。 できるだけ100%の通過率を保証使用にしています。Royalholidayclubbedは多くの受験生を助けて彼らにMicrosoftのDP-100J 問題サンプル試験に合格させることができるのは我々専門的なチームがMicrosoftのDP-100J 問題サンプル試験を研究して解答を詳しく分析しますから。
この問題集の合格率は高いので、多くのお客様からDP-100J日本語版トレーリング問題集への好評をもらいました。DP-100J日本語版トレーリング問題集のカーバー率が高いので、勉強した問題は試験に出ることが多いです。だから、弊社の提供するDP-100J日本語版トレーリング問題集を暗記すれば、きっと試験に合格できます。
あなたにMicrosoftのMicrosoft DP-100J日本語版トレーリング試験に自信を持たせます。RoyalholidayclubbedにたくさんのIT専門人士がいって、弊社の問題集に社会のITエリートが認定されて、弊社の問題集は試験の大幅カーバして、合格率が100%にまで達します。弊社のみたいなウエブサイトが多くても、彼たちは君の学習についてガイドやオンラインサービスを提供するかもしれないが、弊社はそちらにより勝ちます。Royalholidayclubbedは同業の中でそんなに良い地位を取るの原因は弊社のかなり正確な試験の練習問題と解答そえに迅速の更新で、このようにとても良い成績がとられています。そして、弊社が提供した問題集を安心で使用して、試験を安心で受けて、君のMicrosoft DP-100J日本語版トレーリング認証試験の100%の合格率を保証しますす。
古くから成功は準備のできる人のためにあると聞こえます。多くの人々は我々社のDP-100J日本語版トレーリング問題集を介して、MicrosoftのDP-100J日本語版トレーリング試験資格認定を取得しました.しかも、この優位を持ってよい仕事を探しました。
DP-100J PDF DEMO:QUESTION NO: 1 注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、 記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質 問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります 。 このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら の質問はレビュー画面に表示されません。 複数の列に欠損値を含む数値データセットを分析しています。 機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が あります。 すべての値を含めるには、完全なデータセットを分析する必要があります。 解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま す。 ソリューションは目標を達成していますか? A. はい B. いいえ Answer: A Explanation Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or "Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values. Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns. References: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/ https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
QUESTION NO: 2 Azure Machine Learning Studioを使用してデータセットを分析しています。 各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。 ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し ます。 注:それぞれの正しい選択には1ポイントの価値があります。 A. インジケーター値に変換 B. カウントテーブルのエクスポート C. 線形相関の計算 D. データの要約 E. Pythonスクリプトの実行 Answer: B,C Explanation The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules. E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know: How many missing values are there in each column? How many unique values are there in a feature column? What is the mean and standard deviation for each column? The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input. References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/summarize-data
QUESTION NO: 3 モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま す。 あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ ンを選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: 500 For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock. A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment. Here we must replicate the findings. Box 2: Mean Absolute Error Scenario: Given a trained model and a test dataset, you must compute the Permutation Feature Importance scores of feature variables. You need to set up the Permutation Feature Importance module to select the correct metric to investigate the model's accuracy and replicate the findings. Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of Determination References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/permutation-feature-importan
QUESTION NO: 4 Azure Machine Learning Studioで新しい実験を作成します。多くの列に欠損値がある小さなデータセットがあります 。データでは、各列に予測変数を適用する必要はありません。欠落データの処理モジュール を使用して、欠落データを処理する予定です。 データクリーニング方法を選択する必要があります。 どの方法を使用する必要がありますか? A. 確率的PACを使用して置換 B. 正規化 C. MICEを使用して交換 D. 合成マイノリティ Answer: A
QUESTION NO: 5 x.1、x2、およびx3の機能に対してscikit-learn Pythonライブラリを使用して、機能のスケーリングを実行しています。 元のデータとスケーリングされたデータを次の図に示します。 ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回 答する回答選択肢を選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: StandardScaler The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1. Example: All features are now on the same scale relative to one another. Box 2: Min Max Scaler Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap. Box 3: Normalizer References: http://benalexkeen.com/feature-scaling-with-scikit-learn/
MicrosoftのHuawei H19-637_V1.0試験に合格することは容易なことではなくて、良い訓練ツールは成功の保証でRoyalholidayclubbedは君の試験の問題を準備してしまいました。 ACFE CFE-Law - 使用した後、我々社の開発チームの細心と専業化を感じます。 Microsoft AZ-204-KR - どんな業界で自分に良い昇進機会があると希望する職人がとても多いと思って、IT業界にも例外ではありません。 Microsoft SAP C-BCSBS-2502資格認定を取得するのはそのような簡単なことです。 ACFE CFE-Fraud-Prevention-and-Deterrence - 一目でわかる最新の出題傾向でわかりやすい解説と充実の補充問題があります。
Updated: May 28, 2022
|
|