Home
My
$18,000 Timeshare Story
Objectives
The
Power Of Two
Other
People's Stories
Important
Links
Timeshare
Articles
RHC
Destination Reviews
Who
Is Harpy?
Write
To Harpy
Throw
Harpy A Fish!
The
Timeshare Club
Bookmark
this site
Need
More Information?
|
Royalholidayclubbedはとても良い選択で、DP-100J復習テキストの試験を最も短い時間に縮められますから、あなたの費用とエネルギーを節約することができます。それに、あなたに美しい未来を作ることに助けを差し上げられます。MicrosoftのDP-100J復習テキスト認定試験に受かるのはあなたの技能を検証することだけでなく、あなたの専門知識を証明できて、上司は無駄にあなたを雇うことはしないことの証明書です。 弊社の試験問題はほとんど毎月で一回アップデートしますから、あなたは市場で一番新鮮な、しかも依頼できる良い資源を得ることができることを保証いたします。Royalholidayclubbedは当面最新のMicrosoftのDP-100J復習テキストの認証試験の準備問題を提供している認証された候補者のリーダーです。 あなたはキャリアで良い昇進のチャンスを持ちたいのなら、RoyalholidayclubbedのMicrosoftのDP-100J復習テキスト「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」試験トレーニング資料を利用してMicrosoftの認証の証明書を取ることは良い方法です。
DP-100J復習テキスト認定試験に合格することは難しいようですね。あなたの希望はRoyalholidayclubbedのMicrosoftのDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)復習テキスト試験トレーニング資料にありますから、速く掴みましょう。 一回だけでMicrosoftのDP-100J ソフトウエア試験に合格したい?Royalholidayclubbedは君の欲求を満たすために存在するのです。Royalholidayclubbedは君にとってベストな選択になります。
ですから、ぜひRoyalholidayclubbedというチャンスを掴んでください。RoyalholidayclubbedのMicrosoftのDP-100J復習テキスト試験トレーニング資料はあなたがMicrosoftのDP-100J復習テキスト認定試験に合格することを助けます。この認証を持っていたら、あなたは自分の夢を実現できます。
Microsoft DP-100J復習テキスト - では、どんな参考書は選べる価値を持っていますか。世の中に去年の自分より今年の自分が優れていないのは立派な恥です。それで、IT人材として毎日自分を充実して、DP-100J復習テキスト問題集を学ぶ必要があります。弊社のDP-100J復習テキスト問題集はあなたにこのチャンスを全面的に与えられます。あなたは自分の望ましいMicrosoft DP-100J復習テキスト問題集を選らんで、学びから更なる成長を求められます。心はもはや空しくなく、生活を美しくなります。
もしうちの学習教材を購入するなら、Royalholidayclubbedは一年間で無料更新サービスを提供することができます。RoyalholidayclubbedのMicrosoftのDP-100J復習テキスト認定試験の合格率は100パーセントになっています。
DP-100J PDF DEMO:QUESTION NO: 1 Azure Machine Learning Studioで新しい実験を作成します。多くの列に欠損値がある小さなデータセットがあります 。データでは、各列に予測変数を適用する必要はありません。欠落データの処理モジュール を使用して、欠落データを処理する予定です。 データクリーニング方法を選択する必要があります。 どの方法を使用する必要がありますか? A. 確率的PACを使用して置換 B. 正規化 C. MICEを使用して交換 D. 合成マイノリティ Answer: A
QUESTION NO: 2 機械学習モデルを使用してインテリジェントなソリューションを構築しています。 環境は次の要件をサポートする必要があります。 *データサイエンティストはクラウド環境でノートブックを構築する必要がある *データサイエンティストは、機械学習パイプラインで自動フィーチャエンジニアリングと モデル構築を使用する必要があります。 *動的なワーカー割り当てでSparkインスタンスを使用して再トレーニングするには、ノート ブックを展開する必要があります。 *ノートブックは、ローカルでバージョン管理するためにエクスポート可能である必要があ ります。 環境を作成する必要があります。 どの4つのアクションを順番に実行する必要がありますか?回答するには、適切なアクショ ンをアクションのリストから回答エリアに移動し、正しい順序に並べます。 Answer: Explanation Step 1: Create an Azure HDInsight cluster to include the Apache Spark Mlib library Step 2: Install Microsot Machine Learning for Apache Spark You install AzureML on your Azure HDInsight cluster. Microsoft Machine Learning for Apache Spark (MMLSpark) provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets. Step 3: Create and execute the Zeppelin notebooks on the cluster Step 4: When the cluster is ready, export Zeppelin notebooks to a local environment. Notebooks must be exportable to be version controlled locally. References: https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-zeppelin-notebook https://azuremlbuild.blob.core.windows.net/pysparkapi/intro.html
QUESTION NO: 3 注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、 記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質 問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります 。 このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら の質問はレビュー画面に表示されません。 複数の列に欠損値を含む数値データセットを分析しています。 機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が あります。 すべての値を含めるには、完全なデータセットを分析する必要があります。 解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま す。 ソリューションは目標を達成していますか? A. はい B. いいえ Answer: A Explanation Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or "Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values. Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns. References: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/ https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
QUESTION NO: 4 Azure Machine Learning Studioを使用してデータセットを分析しています。 各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。 ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し ます。 注:それぞれの正しい選択には1ポイントの価値があります。 A. インジケーター値に変換 B. カウントテーブルのエクスポート C. 線形相関の計算 D. データの要約 E. Pythonスクリプトの実行 Answer: B,C Explanation The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules. E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know: How many missing values are there in each column? How many unique values are there in a feature column? What is the mean and standard deviation for each column? The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input. References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/summarize-data
QUESTION NO: 5 モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま す。 あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ ンを選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: 500 For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock. A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment. Here we must replicate the findings. Box 2: Mean Absolute Error Scenario: Given a trained model and a test dataset, you must compute the Permutation Feature Importance scores of feature variables. You need to set up the Permutation Feature Importance module to select the correct metric to investigate the model's accuracy and replicate the findings. Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of Determination References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/permutation-feature-importan
現在IT技術会社に通勤しているあなたは、MicrosoftのIAPP AIGP試験認定を取得しましたか?IAPP AIGP試験認定は給料の増加とジョブのプロモーションに役立ちます。 VMware 3V0-21.23 - もし君はいささかな心配することがあるなら、あなたはうちの商品を購入する前に、Royalholidayclubbedは無料でサンプルを提供することができます。 人によって目標が違いますが、あなたにMicrosoft Cisco 200-301J試験に順調に合格できるのは我々の共同の目標です。 SAP C-BCSBS-2502 - 弊社の商品はあなたの圧力を減少できます。 あなたに高品質で、全面的なAmazon MLS-C01参考資料を提供することは私たちの責任です。
Updated: May 28, 2022
|
|