Home
My
$18,000 Timeshare Story
Objectives
The
Power Of Two
Other
People's Stories
Important
Links
Timeshare
Articles
RHC
Destination Reviews
Who
Is Harpy?
Write
To Harpy
Throw
Harpy A Fish!
The
Timeshare Club
Bookmark
this site
Need
More Information?
|
それで、速く我々RoyalholidayclubbedのMicrosoft DP-100Jトレーリングサンプル試験問題集を入手しましょう。社会に入った後の私達は最もの責任があって、学習の時間は少なくなりました。IT領域により良く発展したいなら、Microsoft DP-100Jトレーリングサンプルのような試験認定資格を取得するのは重要なことです。 それで、我々社の無料のMicrosoft DP-100Jトレーリングサンプルデモを参考して、あなたに相応しい問題集を入手します。暇の時間を利用して勉強します。 そのいくつの点で、DP-100Jトレーリングサンプル試験に合格することを保障できます。
Microsoft Azure DP-100J Royalholidayclubbedを選られば、成功しましょう。MicrosoftのDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)トレーリングサンプルの認定試験は君の実力を考察するテストでございます。 弊社のIT業で経験豊富な専門家たちが正確で、合理的なMicrosoft DP-100J PDF問題サンプル認証問題集を作り上げました。 弊社の勉強の商品を選んで、多くの時間とエネルギーを節約こともできます。
きみはMicrosoftのDP-100Jトレーリングサンプル認定テストに合格するためにたくさんのルートを選択肢があります。Royalholidayclubbedは君のために良い訓練ツールを提供し、君のMicrosoft認証試に高品質の参考資料を提供しいたします。あなたの全部な需要を満たすためにいつも頑張ります。
Microsoft DP-100Jトレーリングサンプル - きっと君に失望させないと信じています。今あなたが無料でRoyalholidayclubbedが提供したMicrosoftのDP-100Jトレーリングサンプル認定試験の学習ガイドをダウンロードできます。それは受験者にとって重要な情報です。
我々は受験生の皆様により高いスピードを持っているかつ効率的なサービスを提供することにずっと力を尽くしていますから、あなたが貴重な時間を節約することに助けを差し上げます。Royalholidayclubbed MicrosoftのDP-100Jトレーリングサンプル試験問題集はあなたに問題と解答に含まれている大量なテストガイドを提供しています。
DP-100J PDF DEMO:QUESTION NO: 1 モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま す。 あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ ンを選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: 500 For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock. A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment. Here we must replicate the findings. Box 2: Mean Absolute Error Scenario: Given a trained model and a test dataset, you must compute the Permutation Feature Importance scores of feature variables. You need to set up the Permutation Feature Importance module to select the correct metric to investigate the model's accuracy and replicate the findings. Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of Determination References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/permutation-feature-importan
QUESTION NO: 2 x.1、x2、およびx3の機能に対してscikit-learn Pythonライブラリを使用して、機能のスケーリングを実行しています。 元のデータとスケーリングされたデータを次の図に示します。 ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回 答する回答選択肢を選択します。 注:それぞれの正しい選択には1ポイントの価値があります。 Answer: Explanation Box 1: StandardScaler The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1. Example: All features are now on the same scale relative to one another. Box 2: Min Max Scaler Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap. Box 3: Normalizer References: http://benalexkeen.com/feature-scaling-with-scikit-learn/
QUESTION NO: 3 Azure Machine Learning Studioを使用してデータセットを分析しています。 各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。 ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し ます。 注:それぞれの正しい選択には1ポイントの価値があります。 A. インジケーター値に変換 B. カウントテーブルのエクスポート C. 線形相関の計算 D. データの要約 E. Pythonスクリプトの実行 Answer: B,C Explanation The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules. E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know: How many missing values are there in each column? How many unique values are there in a feature column? What is the mean and standard deviation for each column? The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input. References: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table https://docs.microsoft.com/en-us/azure/machine-learning/studio-module- reference/summarize-data
QUESTION NO: 4 分類タスクを解決しています。 データセットが不均衡です。 あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必 要があります。 あなたはどちらのモジュールを使用する必要がありますか? A. フィルタに基づく機能の選択 B. 順列機能の重要性 C. フィッシャー線形判別分析。 D. の合成少数オーバーサンプリング技術(撃ち) Answer: D Explanation Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases. You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented. Reference: https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
QUESTION NO: 5 注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、 記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質 問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります 。 このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら の質問はレビュー画面に表示されません。 複数の列に欠損値を含む数値データセットを分析しています。 機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が あります。 すべての値を含めるには、完全なデータセットを分析する必要があります。 解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま す。 ソリューションは目標を達成していますか? A. はい B. いいえ Answer: A Explanation Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or "Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values. Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns. References: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/ https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
GitHub GitHub-Advanced-Security - RoyalholidayclubbedはきみのIT夢に向かって力になりますよ。 Royalholidayclubbedが提供したMicrosoftのGitHub GitHub-Advanced-Securityトレーニング資料を利用したら、MicrosoftのGitHub GitHub-Advanced-Security認定試験に受かることはたやすくなります。 Royalholidayclubbedを利用したら、MicrosoftのPalo Alto Networks NGFW-Engineer試験に合格するのを心配することはないです。 Amazon DVA-C02-KR - あなたが自分のキャリアでの異なる条件で自身の利点を発揮することを助けられます。 当面の実際のテストを一致させるために、RoyalholidayclubbedのMicrosoftのCyberArk IAM-DEF問題集の技術者はずべての変化によって常に問題と解答をアップデートしています。
Updated: May 28, 2022
|
|